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1. INTRODUCTION

In a conservative system the sum of a particle's kinetic and potential energies will be "xed
for all time. The points at which the potential energy equals the total energy will determine
the physical limits of the motion. These limits are the turning points since the velocity will
be zero. If the motion is bounded by such points the region is "nite. The motion of a system
having one degree of freedom takes place in one dimension or along a straight line.
A particle oscillates in one dimension if it moves repeatedly backward and forward between
two turning points. One class of oscillations of a particle relies on a restoring force which is
always directed towards an equilibrium point situated midway between the two turning
points. In such a case, the motion will be symmetrical and the displacement of the particle
from the midpoint, a periodic function of time which is not necessarily sinusoidal. If
conservative motion is initiated either by a discrete impulse (kinetic energy) and or a static
displacement (potential energy) the subsequent oscillations will be free or self-sustaining.
This article will consider such restoring forces on a particle and o!er a numerical solution of
a non-linear equation of motion. Previous investigations of various aspects of this problem
with more references [1, 2] are available.

2. THE EQUATION OF MOTION

For a particle of mass m subject to a restoring force which is proportional to any real
power n of the magnitude of its displacement from an equilibrium point at the origin and
oscillating symmetrically between its turning points at x"$A, with a positive constant of
proportionality k, the one-dimensional Newtonian equation of motion is

mxK#k sgn(x) �x ��"0, R*n*!R, A*x*!A, (1)

where sgn (x)"x/ �x � .

Now, since xK"dxR /dt"xR (dxR /dx) immediate integration of equation (1) gives

m
(xR )�
2
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k �x ����

(n#1)
#C, nO!1. (2)
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When n"!1,

m
(xR )�
2

"!k ln �x �#C. (3)

It should be noted that dimensionally equations (2) and (3) are energy equations. The
constant of integration C is decided by the value of x at either turning point when the speed
�xR �"0.
Equations (2) and (3) then become

xR "$��
2(A���!�x ����)

n#1
, where �"�

k

m
, A*�x � , (4)

xR "$��2 ln �
A

�x �� , where �"�
k

m
, A*�x � . (5)

When xP0, equations (4) and (5) will take a maximum value, v, such that

lim
���

xR "v"�$��
2A���

n#1
, n'!1,

P$R, n)!1.

(6)

The singularity at the origin for n)!1 does not rule out oscillations. However, such
inverse power restoring forces do require very large but realistically ,nite system energies to
operate. Gravitational attraction with n"!2 is one rather interesting example with
C negative and the particle's potential energy always negative with its magnitude exceeding
that of its kinetic energy.
Separating the variables in equations (4) and (5) and integrating between the limits for

x at t gives

�
�

�
�

n#1

2(A���!�x ����)
dx"� �

�

�

dt, A*x*!A, nO!1, (7)

�
�

�

dx

�2 ln(A/ �x � )
"��

�

�

dt, A*x*!A, n"!1. (8)

The exact solutions of the integral equations (7) and (8) would give the position of the
particle as a periodic function of time x"f (t) for any value of n. From the symmetry of the
motion the time taken to travel from A to 0 will thus be a quarter of the period ¹.
Integrating equation (7) between these limits and multiplying by four therefore gives

¹"
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� �
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n#1

2(A���!x���)
dx. (9)



Figure 1. Computation of I
�
, equation (10), over the range!20)n)20, nO!1. It should be noted that I

�
is

a continuous function of n with no special distinction between integers, algebraic signs and even or odd values of n.
The special case of n"!1 where I

�
"�8� is also included in this curve.
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Making the substitution z"x/A for 0)x)A then gives

¹"

A�������I
�

�
, where I

�
"�

�

�
�
8(n#1)

1!z���
dz, nO!1. (10)

For n"!1 it can be shown that ¹"�8� A/�. (11)

In the particular case n"1, or linear motion, the period can be seen to be uniquely
independent of A with ¹"2�/�. The integral I

�
can be computed for any $ve value of

n and a range of values is shown in Figure 1.
The general dependence of ¹ on the initial displacement A suggests a practical means for

the determination of n and �. If by experiment, it was found that ¹"¹
�
when A"A

�
and

¹"¹
�
when A"A

�
, it then follows by using equation (10)

¹
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�

I
�
and ¹

�
"

A�������
�
�

I
�
. (12)

Hence dividing the parts of equation (12) leads to

n"1!2�
ln¹

�
!ln¹

�
lnA

�
!lnA

�
� . (13)

Adding the parts of equation (12) and substituting the value of n from equation (13) then
gives
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). (14)
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3. NUMERICAL SOLUTIONS

Equations (7) and (8) do not appear to have a generalized form x"f (t) but can be solved
numerically. It is clear that t"g(x) and since it is periodic between A and !A, the
oscillation in this range can be plotted, rotated through 903 and "nally subjected to
a repeating period of ¹. Such a process is described for n"0 in Figure A1 in Appendix A.
With the single exception of n"1, equation (10) shows that ¹ depends crucially on the

magnitude of A and by implication allows an in"nite range of frequencies. However, for any
value of A it is still possible to create a Fourier sine series representation of the periodic
wave form x"f (t). The &&fundamental'' 2�/¹ will have the usual integer multiples.

x(t)"
�
�
�	�

B
�
sin�

2s�t
¹ � , where B�

"

4

¹ �
���

�

f (t) sin�
2s�t
¹ �dt. (15)

Unfortunately, the above strategy has a fatal #aw: x"f (t) is the very solution being sought.
However, two particular cases, n"1 and 0, do have exact solutions which can be tested
against the numerical method. For convenience let x (0)"0 giving x (¹/4)"A, then

n"1, mxK#kx"0Nx"A sin�
2�t
¹ � , where ¹"2��

m

k
from equation (10) (16)

n"0, mxK#k sgn (x)"0Nx"

32A

�


�
�
�	�

1

(2s!1)

sin�

2(2s!1)�t
¹ � ,

where ¹"�
32mA

k
from equation (10). (17)

Equation (17) has the particle subjected to a constant restoring force directed towards the
origin. The solution is obtained by integrating twice to derive a quadratic expression
(a parabola above and below the time axis) or x"$(8At/¹ ) (1!2t/¹ ) for 0)t)¹/2.
This exact and intrinsically periodic solution will clearly repeat from the beginning of every
cycle of ¹ and can be shown to be the above Fourier sine series. Equation (17) can be
compared exactly with equation (19) in reference [2]. The above solutions, equations (16)
and (17), provide an excellent "t and con"rmation with the graphical trace. Figure 2 shows
the superimposed wave forms
Figure 2. Superimposed n"1 and 0 cases. The period ¹ is chosen to be the same. The dotted line is for n"1
and the full line n"0. The parabola for n"0 shows the initial trend towards a square wave as nP!R.



Figure 3. Case n"20, �"2, (a) for A"5; (b) for A"A/5. This con"rms equation (19) and the e!ect of the
turning point when nPR. The period when A"1 is 6)89885 s.
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Two further solutions, which can be regarded as limiting cases, are worth considering.

The "rst case is for large positive value of n

n"NPRNmxK#k sgn(x) �x �	"0. (18)

The example for n"20 in Figure 3 gives a clear indication that the motion is
approaching a triangular shape in the time domain. The interpretation is that the particle is
travelling at a constant speed �v � with almost instantaneous reversal at either x"A or!A.
One could imagine the bob of a very long pendulum which is caught between two vertical
plates and undergoing perfectly elastic rebounds. A very good approximation on limiting
solution for large values of n will therefore be a Fourier sine series for a triangular shape
which can be obtained in the following form:

xK

8A

��

�
�
�	�

(!1)���

(2s!1)�
sin �

2(2s!1)�t
¹ � , where ¹"

4A

v
P�

0, A'1,

R, A(1.
(19)

In Figure 3 the e!ect of the magnitude of the separation of the turning points is also shown
for n"20, for cases A'1 and A(1.
Di!erentiating equation (19) to obtain the velocity at any time produces a step function

with jumps at x"A and!A. The appearance of the Gibbs' phenomenon in the vicinity of
these points is peculiar to the Fourier sine series approximation close to a discontinuity and
is not exhibited if the exact form, equation (4), is used.



Figure 4. Case n"!20, �"2, (a) for A"5; (b) for A"A/5. This con"rms equation (21) and the e!ect of the
turning point when nP!R. The period when A"1 is 0)95157 s.
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The second case is for large negative value of n

n"!NP!RNmxK#
k sgn(x)

�x �	
"0. (20)

It will be seen in Figure 4 for n"!20 for cases of A'1 and A(1 that a vibration with
quasi-square wave characteristics is indicated. In the limit, nP!R, therefore a particle is
predicted to jump periodically and instantaneously between its turning points.
The corresponding Fourier series would be

xK

4A

��

�
�
�	�

1

(2s!1)
sin �

2(2s!1)�t
¹ � , where ¹P�

R, A'1,

0, A(1.
(21)

Equation (21) could be the description of a relaxation phenomenon with the particle
notionally at rest at almost all times, i.e., pure potential energy. It would be the exact
antithesis of nPR where the particle travels at constant speed between its turning points,
i.e., pure kinetic energy. Newton's "rst law that a particle stays at rest or continues to move
in a straight line with constant speed unless acted on by an external force could therefore be
satis"ed by nP!R and nPR respectively.
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APPENDIX A: NUMERICAL SOLUTION OF THE NON-LINEAR EQUATION
OF MOTION (1) USING MATHCAD

No special requirements are necessary and the worksheet below should be
self-explanatory.
The technique is to construct the oscillation piecemeal using the period¹ as the repeating

factor. Time (t) is plotted along the horizontal axis with the displacement (x) on the vertical

A :"5 n :"0 � :"2 x :"!A, �!A#

A

399� ) ) A

¹(n) :"
4

� �
�

�
�

n#1

2[A���!( �x � )���]
dx ¹(n)"6)325

t
�
(x, n) :"

1

� �
�

�
�

n#1

2[A���!( �x � )���]
dx t

�
(x, n) :"!t

�
(x, n)
Figure A1. Plot of numerical solution of equation (7) for A"5, �"2 and n"0.
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